

VTT beyond the obvious

Towards the energy resilience of buildings in the Nordics

23rd September 2025

Hassam ur Rehman, D.Sc. (Tech.) Senior Scientist, VTT Technical Research center Research fellow, Research council of Finland IEA EBC ExCo Finland & OA Annex 93

Aim

Discuss broadly about the concept of energy resilience and review examples

Introduction

Climate change (& high temperatures)→ Emissions caused by fossil fuel use

→ Energy production → Building consumption

Buildings account for 30%-40% of final energy consumption and nearly 40% of the CO₂ emissions in Europe

Address the issue

To address this issue,

Paris agreement (2015): Limit global warming to 2-1.5° C above pre-industrial levels.

- **Ability to adapt** and minimize risk to the adverse impacts of climate change.

The future is uncertain and full of various threats

- Climate crises are becoming more frequent.
- In 2023 → 399 natural disasters, 86k deaths, 93M affected, €192.7B in losses.
- Build environment: <u>Central role in resilience</u> (due to large share of wealth, urbanization, interconnections and complexity).

Finland published guidelines on preparedness for resilience in 2024.

Why Energy Resilient Buildings/districts are needed? In current situation

Challenges that exist and are forthcoming are:

- Climate change and environment (natural)
- Political changes and wars (human-induced)
- Supply chain disruptions
- Cyber threats
- Accidents, damage, repair of infrastructure (technical
- Older and vulnerable population

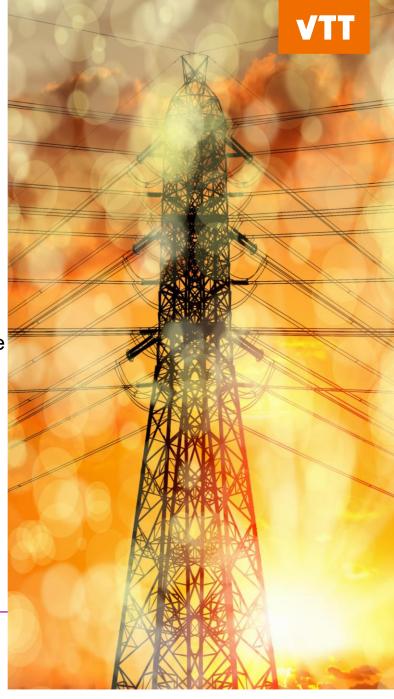
Economic stability and safety

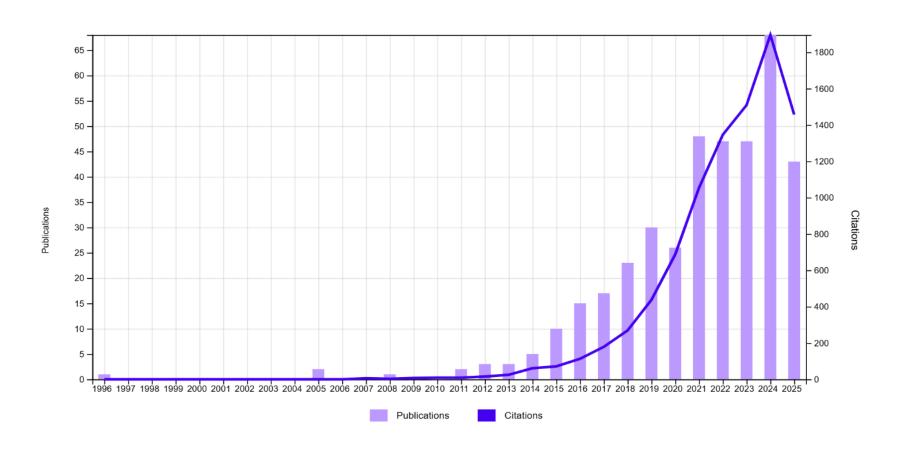
European Energy Crisis Deepens as Power Prices Reach Records

- French electricity for next year tops 600 euros for first time
- Avoiding blackouts requires 'a lot of preparatory work': CEER

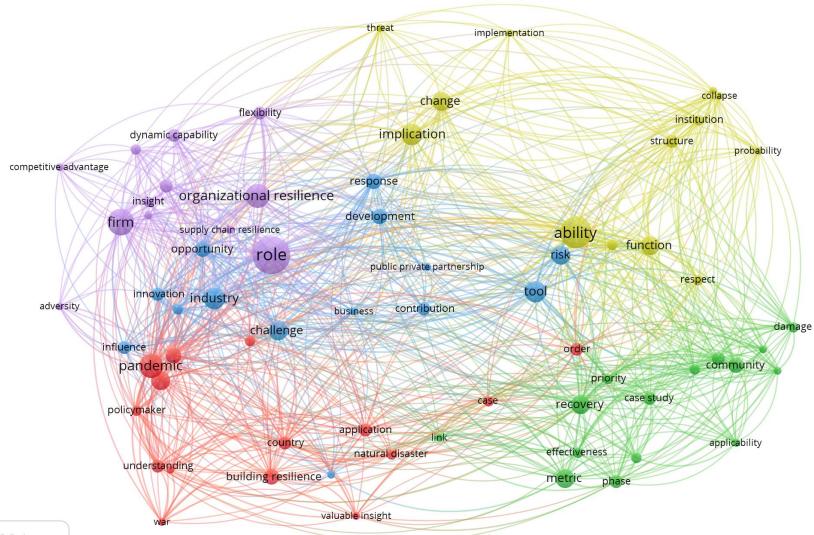
Bloomberg

Finland may face 2-hour power outages this winter


Escalation of negative and costly cascading events in society


Research questions and themes

- Definition: How to define energy resilience during crises?
- Building Classification: How to classify buildings for resilience?
- Human Thresholds: What are the key human vulnerability indicators based on demographics?
- Integration: How to combine methods to boost resilience long-term?
- Optimization: How to optimize techno-social resilience and cost-effectiveness?


Research questions and themes

Web of Science

Research questions and themes

'Energy Resilience' term

- Addresses the unpredictable factor, complex and uncertain events
- Addresses low probability and high impact scenario
- Addresses the transient behavior and estimate the capability of the building to withstand and recover from various disruptions

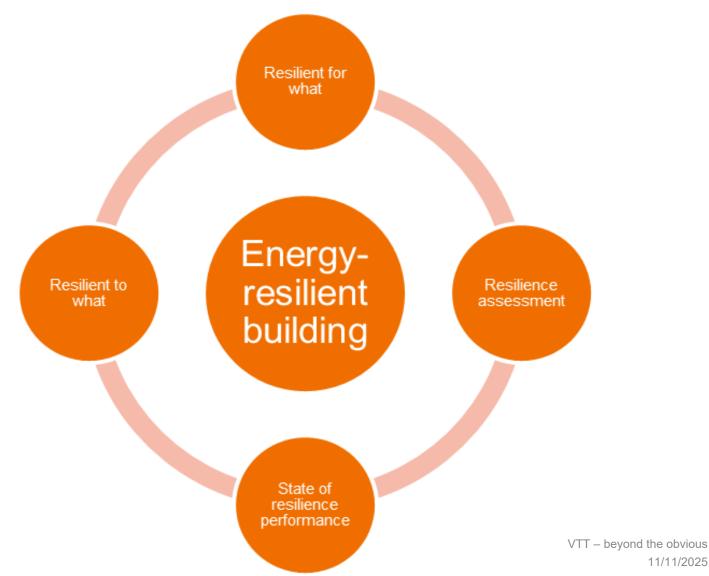
Stability

- · Capability to maintain the state of equilibrium
- · Considers predictable event
- Capability to return to the state of equilibrium after know deviation from normal state

Reliability

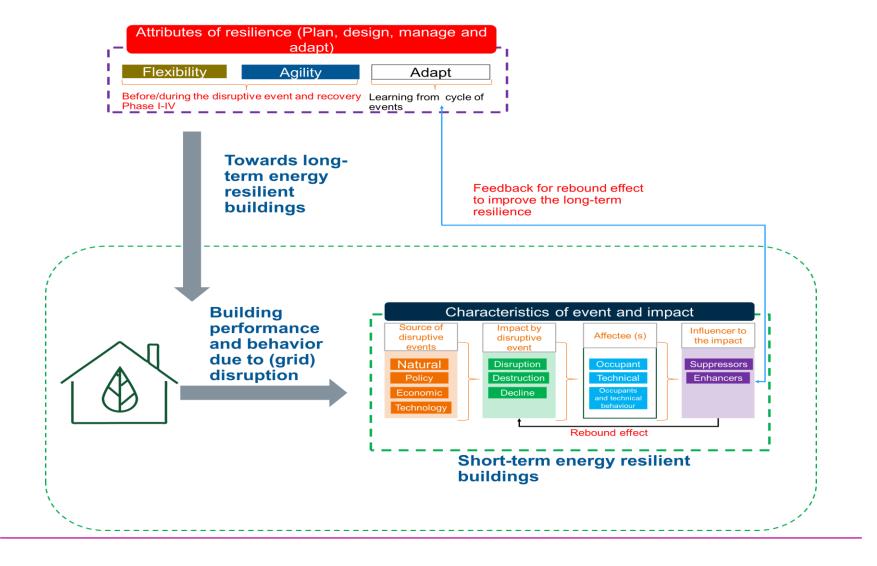
- · Addresses the high probability and low impact scenario
- Considers predictable event
- Addresses service interruption
- Focus on the know threats and disruptive events

Robustness

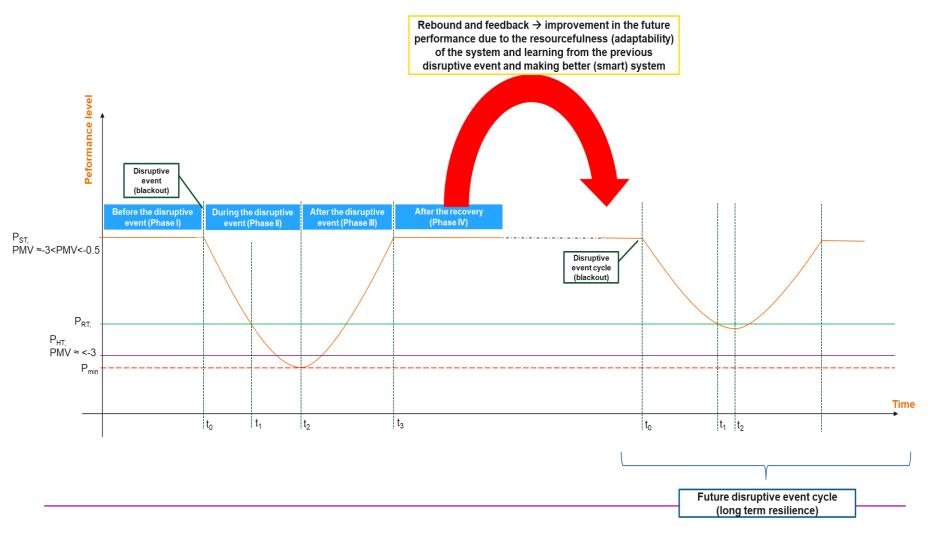

- Considers predictable disruptive event (technical, economic, policy, natural etc.)
- Resistance to change against the disruptive event
- Addresses low probability and high impact scenario

Flexibility

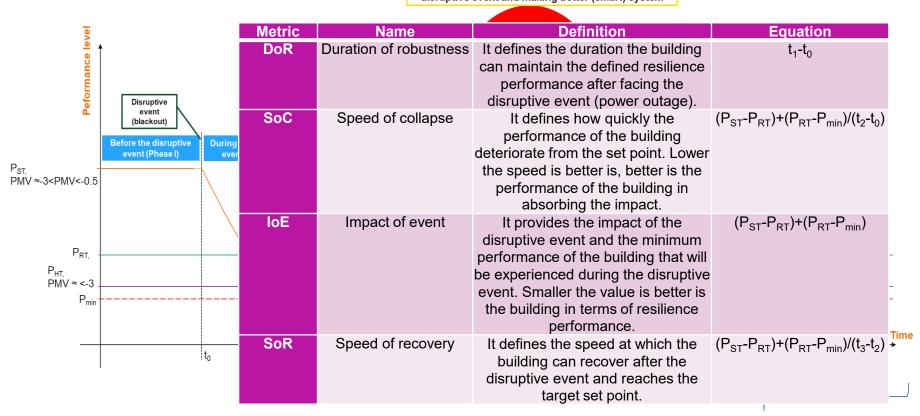
- Addresses high probability and low impact scenario
- Capability to change generation/demand based on the disruptive event
- Withstand the external disruption with less impact on the performance of the building


'Energy Resilience' term

11/11/2025



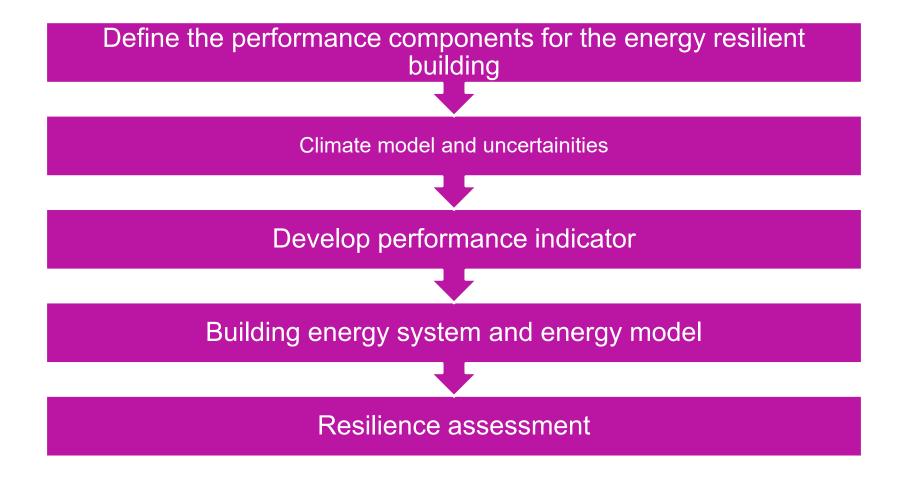
Energy-Resilient Building: Main Components


Multi-Disruptive Event Resilience Curve and Key Performance Indicators

Multi-Disruptive Event Resilience Curve and Key Performance Indicators

Rebound and feedback → improvement in the future performance due to the resourcefulness (adaptability) of the system and learning from the previous disruptive event and making better (smart) system

Future disruptive event cycle (long term resilience)

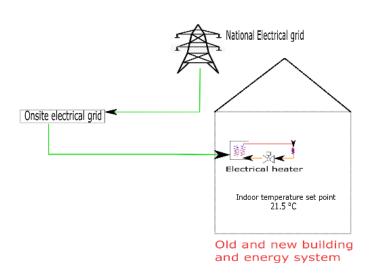

VTT

Definition of energy resilient buildings

- Building that can maintain (during power outage):
 - the indoor temperature within the habitability thresholds
 - provide survivability conditions → low level of electrical power for essential services
- The aim:
 - reduce impact on the health of the building's occupants
 - reduce damage to the building's structure.
 - Energy-efficient to conserve heat and energy.
- Finally, improve its long-term resilience for future disruptive event
 - smart design learned from rebound.

Energy Resilience Framework

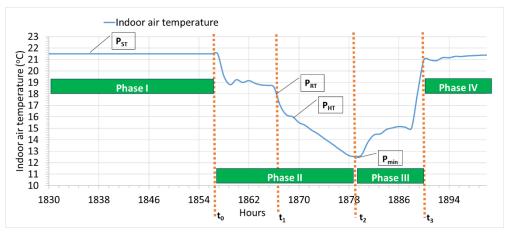
Passive resilience



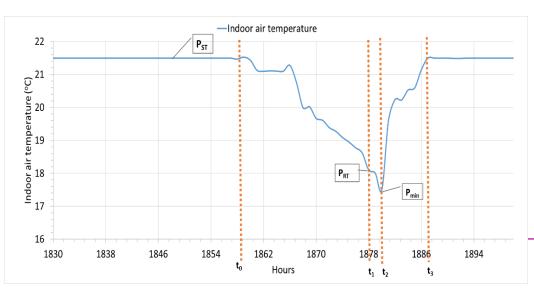
"Habitability" refers to a building's ability to maintain at least a low habitable temperature during a blackout.

If the building relies on passive methods such as thermal mass, insulation, and airtightness to achieve it, this is referred to as "passive habitability or resilience."

Case studies


Building	Ventilation		U-value ((W/m ² K)	
type	air flow (m ³ /h m ²)	Ext. Walls	Roof	Windows	Floor
Old building	6	0.5	0.27	2.5	0.38
New building	2	0.17	0.09	1	0.16

- Old building (OB)-1980s
- New building (NB)- 2021

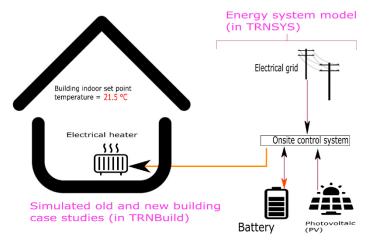

Only heating energy is analyzed, direct electricity is used for heating

Case studies: Results

Old building resilience

Wetrics	Ola Bullaing	New Building
P_{RT}	18 °C	18 °C
P _{HT} or MAHT	16 °C	16 °C
P_{min}	12.54 °C	17.5 °C (higher is better)
Degree of disruption (DoD)	0.300	0.138 (lower is better)
Speed of collapse (SoC)	3.75 °C/h	3.2 °C/h (lower is better)
loE	8.9 °C	4 °C (lower is better)
SoR	0.64 °C/h	0.80 °C/h (higher is better)

Active resilience


In cold conditions, "habitability" refers to a building's ability to maintain at least a low habitable temperature during a blackout.

When active components, like photovoltaic panels, generators, or batteries, are used, it is called "active habitability or resilience"

Impact of extreme weather: Climate change

Case studies

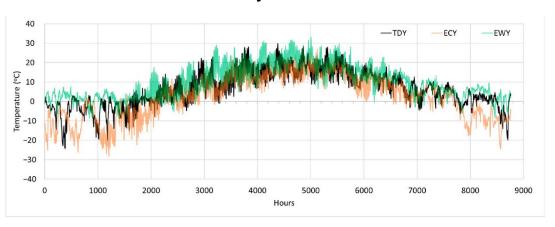
Buildings design data

Building	Ventilati	Air tightnes		U-value	(W/m² K)	
type	on rate (1/h)	s (m³/h m²)	Ext. Walls	Roof	Window s	Floor
Old building	0.55	6	0.5	0.27	2.5	0.38
New building	0.55	2	0.17	0.09	1	0.16

Buildings heating demand

Building type	Heating demand (ECY weather)	Heating demand (EWY weather)
Old building	199 kWh/m²/yr	124 kWh/m²/yr
New building	86 kWh/m ² /yr	46 kWh/m ² /yr

- Old building (OB)-1980s
- New building (NB)- 2021
- Only heating energy is analyzed, direct electricity is used for heating
- Passive measures and active methods (PV and battery) are used


Case studies

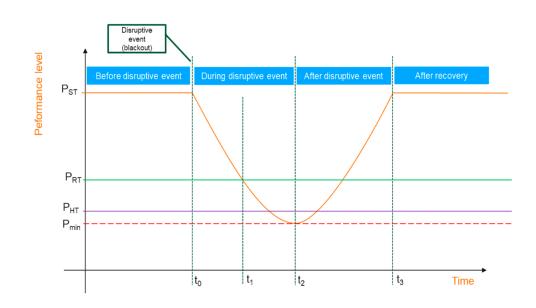
Weather data

ECY: Extreme cold year

EWY: Extreme warm year

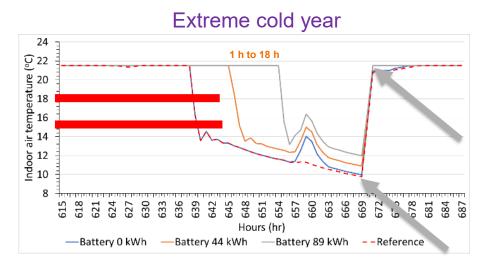
Parametric study data

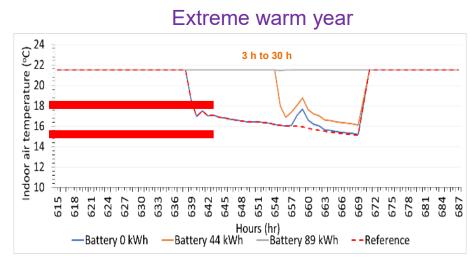
Design variables	Option 1	Option 2
Weather	ECY, EWY	ECY, EWY
Building type	Old building	New building
Photovoltai c area (PV), m ²	0, 50, 100	0, 50, 100
Battery capacity, kWh	0, 44, 89	0, 44, 89


Cost data

Cost type	PV	Battery
Initial cost	124 €/m²	600 €/kWh
Maintenance cost	1.5% (initial cost)	1.5% (initial cost)
Life cycle	25 years	12.5 years
Replacement cost	Included in the maintenance cost	200 €/kWh

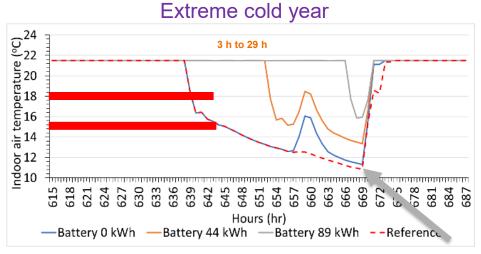
Energy resilience indicators and concept

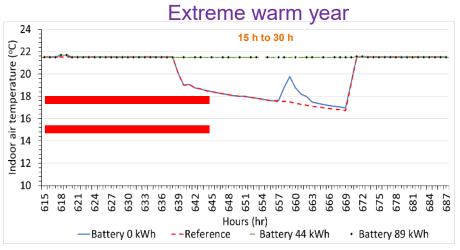

- Setpoint temperature (ST): 21.5 °C
- Robustness threshold (RT): 18 °C
- Robustness period (RP)
- Habitability threshold (HT): <u>15 °C</u>
- Collapse speed (CS)
- Impact of failure (loF)
- Recovery speed (RS)
- Degree of disruption (DoD): DoD calculates the severity and impact on the performance of the building during a blackout.


$$DoD = \frac{Parameter_{disruption} - Parameter_{reference}}{Parameter_{reference}} \times \frac{Time_{disruption}}{Time_{reference}}$$

Results: Energy resilience performance of old building

- Old building → operating at 21.5°C (in ECY and EWY)
- Assumed 30 hours of blackout conditions during winters
- PV = 100 m^2


DoD is **0.545** (passive) and with PV and storage DoD is **0.44**

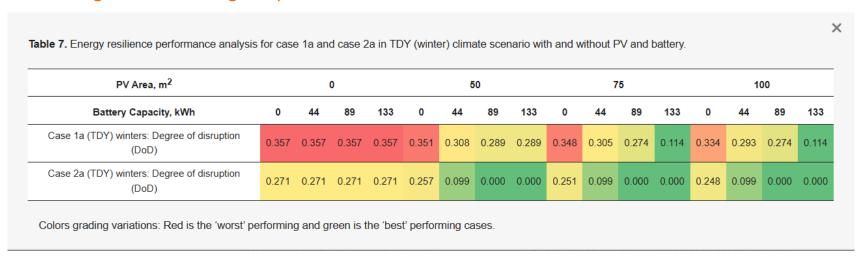

DoD is **0.299** (passive) and **0** (with PV and battery)

Results: Energy resilience performance of new building

- New building → operating at 21.5°C (in ECY and EWY)
- Assumed 30 hours of blackout conditions during winters
- $PV = 100 \text{ m}^2$

DoD is **0.2** (reference) and **0** (with PV and battery)

Results: Classification using KPIs


Old building and new building comparison in ECY weather conditions

PV Area, m ²			0				50			7	75			1	00	
Battery Capacity, kWh	0	44	89	133	0	44	89	133	0	44	89	133	0	44	89	133
Robustness duration (RT), hour	1.00	1.00	1.00	1.00	1.00	8.00	17.00	17.00	1.00	9.00	17.00	24.00	1.00	10.00	18.00	26.00
Impact of failure (IoF), °C	11.723	11.723	11.723	11.723	11.618	10.706	9.624	9.624	11.570	10.650	9.576	8.739	11.523	10.608	9.528	8.553
Collapse speed (CS), °C/h	0.378	0.378	0.378	0.378	0.375	0.345	0.310	0.310	0.373	0.344	0.309	0.282	0.372	0.342	0.307	0.276
Recovery speed (RS), °C/h	0.977	0.977	0.977	0.977	1.056	5.353	4.812	4.812	1.157	5.325	4.788	4.370	1.152	5.304	4.764	4.277
Degree of disruption (DoD)	0.545	0.545	0.545	0.545	0.540	0.498	0.448	0.448	0.538	0.495	0.445	0.406	0.536	0.493	0.443	0.398
PV cost (€)	0	0	0	0	6838	6838	6838	6838	9851	9851	9851	9851	12,864	12,864	12,864	12,864
Battery cost (€)	0	39,377	79,649	119,027	0	39,377	79,649	119,027	0	39,377	79,649	119,027	0	39,377	79,649	119,027

PV Area, m ²			0				50			7	75			1	00	
Battery Capacity, kWh	0	44	89	133	0	44	89	133	0	44	89	133	0	44	89	13
Robustness duration (RT), hour	3.00	3.00	3.00	3.00	3.00	14.00	29.00	30.00	3.00	15.00	29.00	31.00	3.00	15.00	29.00	31.0
Impact of failure (IoF), °C	10.660	10.660	10.660	10.660	10.418	8.375	5.636	5.654	10.307	8.265	5.636	0.021	10.197	8.155	5.636	0.02
Collapse speed (CS), °C/h	0.344	0.344	0.344	0.344	0.336	0.270	0.188	0.188	0.332	0.267	0.188	0.001	0.340	0.263	0.188	0.00
Recovery speed (RS), °C/h	1.777	1.777	1.777	1.777	1.736	2.094	2.818	2.827	2.577	2.755	2.818	0.010	2.039	2.718	2.818	0.01
Degree of disruption (DoD)	0.496	0.496	0.496	0.496	0.485	0.390	0.254	0.254	0.479	0.384	0.254	0.001	0.459	0.379	0.254	0.00
PV cost (€)	0	0	0	0	6838	6838	6838	6838	9851	9851	9851	9851	12,864	12,864	12,864	12,8
Battery cost (€)	0	39,377	79,649	119,027	0	39,377	79,649	119,027	0	39,377	79,649	119,027	0	39,377	79,649	119,0

Results: Optimal analysis

New building and old building comparison in ECY and EWY weather conditions

			Old B	uilding					New B	uilding		
PV Area, m ²	75	50	50	50	100	50	50	50	50	50	50	50
Battery Capacity, kWh	133	89	89	44	133	133	44	44	44	44	89	44
Case	1a TDY, Winter	1a TDY, Spring	1b EWY, Winter	1b EWY, Spring	1c ECY, Winter	1c ECY, Spring	2a TDY, Winter	2a TDY, Spring	2b EWY, Winter	2b EWY, Spring	2c ECY, Winter	2c ECY Spring
egree of disruption (DoD)	0.114	0	0.172	0.153	0.398	0.141	0.099	0	0	0	0.254	0
PV cost (€)	9851	6838	6838	6838	12,864	6838	6838	6838	6838	6838	6838	6838
Battery cost (€)	119,027	79,649	79,649	39,377	119,027	119,027	39,377	39,377	39,377	39,377	79,649	39,377

X

How about human and social impact?

"habitability" should be based on human needs?

How about electrical loads and needs?

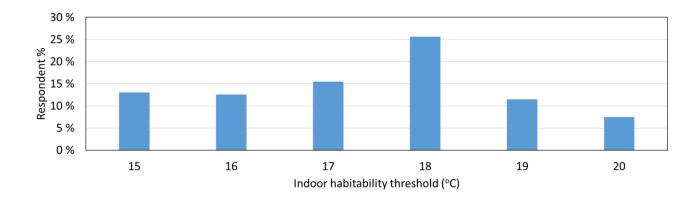
"Survivability" refers to a building's ability to maintain indoor air temperature within habitable ranges while also providing power for essential services

Method: Social survey

 Survey and data collected from 400 people at an organization (Survey distributed across 2400 individuals)

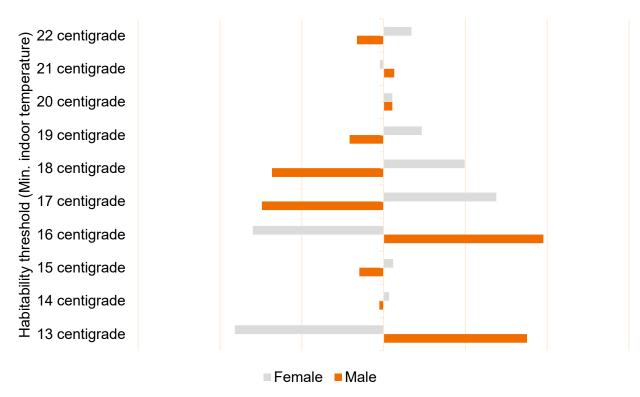
Energy Resilience in Buildings in Extreme Cold Weather Conditions of Finland

Age Below 20 20-30 31-40 41-50 51-60 Above 61 Gender Male Female Non-binary and prefer not to say Location Helsinki, Espoo Oulu Tampere Kuopio Kajaani Jyväskylä Other	Characteristics	Classification
31-40 41-50 51-60 Above 61 Gender Male Female Non-binary and prefer not to say Location Helsinki, Espoo Oulu Tampere Kuopio Kajaani Jyväskylä	Age	Below 20
41-50 51-60 Above 61 Gender Male Female Non-binary and prefer not to say Location Helsinki, Espoo Oulu Tampere Kuopio Kajaani Jyväskylä		20-30
51-60 Above 61 Gender Male Female Non-binary and prefer not to say Location Helsinki, Espoo Oulu Tampere Kuopio Kajaani Jyväskylä		31-40
Above 61 Gender Male Female Non-binary and prefer not to say Location Helsinki, Espoo Oulu Tampere Kuopio Kajaani Jyväskylä		41-50
Gender Male Female Non-binary and prefer not to say Location Helsinki, Espoo Oulu Tampere Kuopio Kajaani Jyväskylä		51-60
Female Non-binary and prefer not to say Location Helsinki, Espoo Oulu Tampere Kuopio Kajaani Jyväskylä		Above 61
Non-binary and prefer not to say Location Helsinki, Espoo Oulu Tampere Kuopio Kajaani Jyväskylä	Gender	Male
Location Helsinki, Espoo Oulu Tampere Kuopio Kajaani Jyväskylä		Female
Oulu Tampere Kuopio Kajaani Jyväskylä		Non-binary and prefer not to say
Tampere Kuopio Kajaani Jyväskylä	Location	Helsinki, Espoo
Kuopio Kajaani Jyväskylä		Oulu
Kajaani Jyväskylä		Tampere
Jyväskylä		Kuopio
, ,		Kajaani
Other		Jyväskylä
		Other
Building type Apartment	Building type	Apartment
Single-family and semi-detached houses		Single-family and semi-detached houses


Social survey

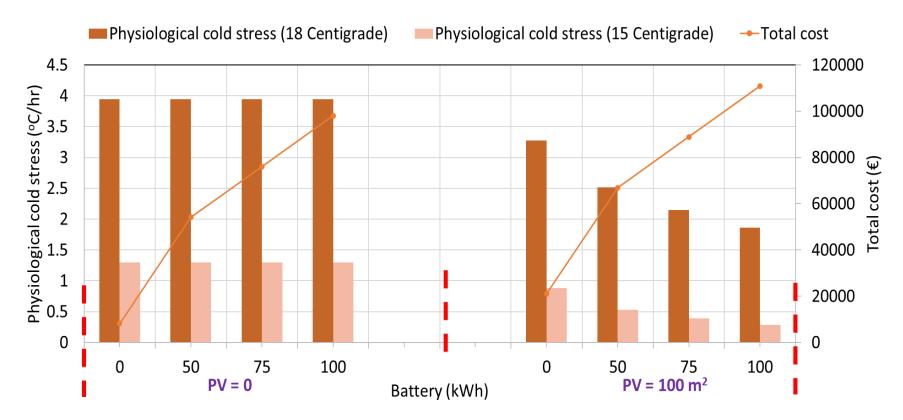
Survey and data collected from 400 people (Survey distributed across Finland)

Overall needs priority



Temperature needs

Social survey


- Survey and data collected from 400 people (Survey distributed across Finland)
- Temperature needs based on gender...age?

Physiological cold stress (PCS)
$$\sum_{t1}^{t3} \frac{\left(L_{HT} - L_{temperature\ below\ habitability}\right)}{t_4 - t_0}$$

Results: Technical resilience performance, human and cost impact using indicators

- Energy resilience performance of old building during winters in 72 h power outage
- Physiological stress based on needs

Survivability factors (after meeting the heating demand) is around 0 to 25 %

Benefits

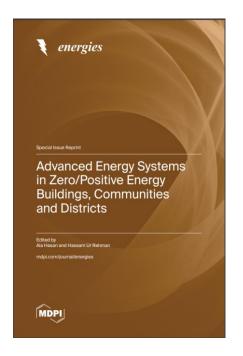
- Cost savings in normal operation
- Increased comfort & psychological safety for occupants, homeowners based on demography
- Improved day-ahead preparedness and awareness
- Better resource planning for rescue operations
- Reduced cascading events and minimized extra rescue costs
- Increased energy flexibility of buildings
- Enhanced sustainability

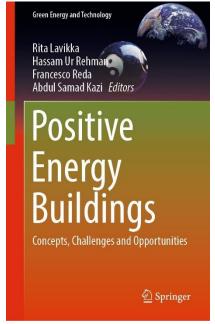
VTT

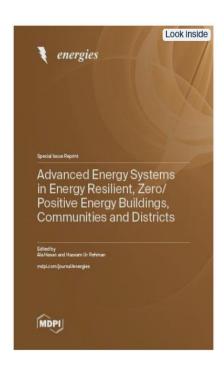
Summary

- Challenges and need for energy resilience
- Definitions and framework
- Building simulation models
- Integration of renewables and storage
- Climate impact
- Cost
- Engagement with the end users

VTT


References


- Energy Resilience in Buildings in Extreme Cold Weather Conditions in Finland-FinERB (2022-2025) (https://cris.vtt.fi/en/projects/energy-resilience-in-buildings-in-extreme-cold-weather-conditions)
- Addressing the challenges of achieving energy resilience in buildings during power outages in Finland: A human centric approach integrating social, economic and technical dimensions (ongoing 2025-2029) (https://research.fi/en/results/funding/83044)
- IEA EBC Annex 93 Energy Resilience of the Buildings in Remote Cold Regions (ongoing 2025-2028) (https://annex93.iea-ebc.org/)
- Driving Urban Transitions (DUT)— Sustainable future for cities and European Union project: RESPED — Enabling Energy Resilience through new energy flexible and affordable Positive Energy District (PED) concepts (https://cris.vtt.fi/en/projects/enabling-energy-resilience-through-new-energy-flexible-and-afford)


Hassam ur Rehman, (D.Sc.) Tech., Senior Scientist Research Fellow, Research Council of Finland IEA EBC ExCo Finland, OA of Annex 93 VTT Technical Research Centre of Finland

Tel: +358 40 621 5917

Email: hassam.rehman@vtt.fi

